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Abstract

The free vibrations of a wide range of tapered rectangular plates with an arbitrary number of intermediate
line supports in one or two directions are investigated[ The domain of the plate is bounded by x� aa\
a"9¾ a³ 0# and y�bb\ b"9¾b³ 0# in the rectangular co!ordinates[ The thickness of the plate is con!
tinuously varying and proportional to a power function xsyt[ A variety of tapered rectangular plates can be
described by giving the taper factors s and t various values[ The intermediate line supports run parallel to
the edges of the plate[ A new set of admissible functions\ which are the static solutions of the tapered beam
with intermediate point supports\ or a strip taken from the plate structure in one or the other direction
under a Taylor series of loads\ is developed[ Consistent convergency independent of the truncation factors
a and b of the plate can be obtained by taking the midpoint of the beam as the expanding point of the
Taylor series[ Unlike conventional admissible functions\ this set of static beam functions can appropriately
vary with the thickness variation of the plate[ The eigenfrequency equation of the plate is derived by the
RayleighÐRitz approach[ A general computer program has been compiled[ It can be seen that the convergency
of the numerical computation is very rapid and that the _rst few eigenfrequencies can be obtained with good
accuracy by using only a small number of terms of the static beam functions[ Sets of _rst!time reported
eigenfrequency data are included for future reference[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The rectangular plate is one of the most widely used structural elements in engineering[ In
practical applications\ intermediate line supports may be placed to reduce the magnitude of
dynamic and static stresses and displacements of the structure or satisfy special architectural and
functional requirements[ It is important for the designers to understand the e}ect of intermediate
line supports on the dynamic behavior of the structure[

� Corresponding author[
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Leissa "0862# summarized the research work on the vibration of rectangular plates before the
early 0869|s[ Many of the investigations were about the uniform rectangular plates[ The problem
of the vibration of plates with varying complexity has received rather less attention[ Appl and
Byers "0854# analysed the fundamental frequency of a rectangular plate with all edges simply
supported and with linear thickness variation in one direction by using the method of upper and
lower bounds[ Kobayashi and Sonoda "0880# applied the power series expansions to analyse the
vibration and buckling of rectangular plates with two opposite edges simply supported and linearly
varying thickness in one direction and Bert and Malik "0885# used the di}erential quadrature
method to investigate such plates[ Soni and Sankara Rao "0863# analysed the free vibration of
rectangular plates having two opposite edges simply supported and exponentially varying thickness
in one direction by using a quintic spline technique of solution[ Pulmano and Gupta "0865# used
the _nite strip method to analyse the free vibration of linearly tapered rectangular plates[ Bhat et
al[ "0889# used the one!dimensional orthogonal polynomials to study a one!direction\ linearly
tapered rectangular plate with di}erent combinations of boundary conditions\ aspect ratio and
truncation factor\ and the fundamental frequency coe.cient was also determined\ with excellent
accuracy\ by means of the optimized Kantorovich method proposed by Laura and Cortinez "0877#[
Dawe "0855# analysed the free vibration of rectangular plate with general variable thickness by
the use of the _nite element method[

If intermediate supports are added to the plate\ the vibratory characteristics of the structure will
change accordingly[ Elishako} and Sternberg "0868# used the modi_ed Bolotin|s method and
Azimi et al[ "0873# used the receptance method to analyse the free vibration of rectangular plates
simply supported at two opposite edges and continuous over line supports perpendicular to those
edges[ Takahashi and Chishaki "0868# presented a sine series solution for the free vibration of
simply supported rectangular plates over a number of line supports in two directions[ Zhou "0883#
used a set of modi_ed vibrating beam functions\ Kim and Dickinson "0876# used a set of one!
dimensional orthogonal polynomials and Liew and Lam "0880# use a set of two!dimensional
orthogonal polynomials to analyse the free vibration line supported rectangular plates in one and
two directions by the RayleighÐRitz method\ and Cheung and Kong "0884# applied the _nite strip
method to analyse such plates[

The vibration analysis of tapered rectangular plates with intermediate line supports is not yet
available in the current literature[ This may be due to the di.culty in forming a simple and
adequate de~ection function which can apply to the entire plate domain and satisfy both the
boundary conditions and the intermediate support conditions[ This study attempts to _ll this
apparent void by providing sets of _rst!time presented eigenfrequency data for such plates[ In this
paper\ the thickness of the plate to be considered is continuously varying and proportional to a
power function xsyt which may describe a wide range of tapered rectangular plates properly by
varying the values of the taper factors s and t[ A new set of admissible functions are developed
from the static solutions of a tapered beam with intermediate point supports under an arbitrary
static load which is expanded into a Taylor series[ The beam is a unit width of strip taken from
the tapered rectangular plate in the longitudinal direction or the vertical direction[ Only a set of
the static beam functions in some direction should be derived because the tapered plate considered
is with a similar thickness variation in two directions[ The RayleighÐRitz method is utilized to
obtain the eigenfrequency equation of the plate[ It is demonstrated that consistent and rapid
convergency can be achieved for arbitrary truncation factors of the plate and that the _rst few
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eigenfrequencies may be obtained with good accuracy by using only a small number of terms of
the static beam functions[

1[ The RayleighÐRitz method for tapered rectangular plates

A tapered rectangular plate with an arbitrary number of intermediate line supports\ as shown
in Fig[ 0\ lies in the xÐy plane and is bounded by edges x � aa\ a and y � bb\ b where a "9 ¾ a ³ 0#
and b "9 ¾ b ³ 0# are referred to as truncation factors of the plate in the x and y directions\
respectively[ The truncated plate is part of the sharp ended plate[ The side lengths of the plate are
A and B in the x and y directions\ respectively\ where A �"0−a#a and B �"0−b#b[ If the plate is
with a sharp edge in the x direction then a � 9 and if the plate is with that in the y direction then
b � 9[ There are Kx and Ky intermediate line supports acting on the plate in the x and y directions\
respectively[ The co!ordinates of the line supports in the x and y directions are xk "k � 0\ 1\ [ [ [ \ Kx#
and yk "k � 0\ 1\ [ [ [ \ Ky#\ respectively[ It is clear that aa ³ xk ³ a "k � 0\ 1\ [ [ [ \ Kx# and bb ³ yk ³ b
"k � 0\ 1\ [ [ [ \ Ky#[ It is assumed that the thickness h"x\y# of the plate is described by a power
function

h"x\y# � h9"x:a#s"y:b#t "0#

where h9 is the thickness of the plate at the point x � a\ y � b[ s and t are referred to as taper
factors of the plate in the x and y directions\ respectively[ A variety of tapered plates can be
described by giving the taper factors s and t values and some common tapered rectangular plates
are shown in Table 0[ The ~exural rigidity of the plate is

Fig[ 0[ A tapered rectangular plate with intermediate line supports[
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Table 0
Some common rectangular plates with variable thickness

Type of non!uniform rectangular plates Taper factors

A uniform plate s � 9\ t � 9
A linearly tapered plate in the x direction s � 0\ t � 9
A linearly tapered plate in the y direction s � 9\ t � 0
A linearly tapered plate in both directions s � 0\ t � 0
A parabolically tapered plate in the x direction s � 1\ t � 9
A parabolically tapered plate in the y direction s � 9\ t � 1
A parabolically tapered plate in both directions s � 1\ t � 1

D"x\ y# � D9"x:a#2s"y:b#2t "1#

in which\ D9 � Eh2
9:01"0−n1# where E is the Young|s modulus and n is the Poisson|s ratio[

Assuming that the largest thickness of the plate is small compared to its boundary dimensions
and that the classical plate theory is valid\ the maximum strain energy Umax and the maximum
kinetic energy Tmax of the plate are given by

Umax �
0
1 g

a

aa g
b

bb

D"x\ y# 60
11W

1x1 1
1

¦1
11W

1x1

11W

1y1
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11W
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11W
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11W
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11W
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0
1

v1 g
a
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b
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rh"x\ y#W1 dy dx "2#

where W is the modal function of the plate\ v is the radian eigenfrequency of the structure and r

is the material density of the plate[ De_ning next non!dimensional coordinates

j � x:a\ h � y:b "3#

and substituting eqns "0#\ "1# and "3# into eqn "2#\ one has
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b

1a2
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0

a g
0
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jshtW1 dh dj "4#

in which\ g � a:b � G"0−b#:"0−a# where G � A:B is the aspect ratio of the plate[ It is assumed
that the variables in the modal function W"j\ h# are separable and may be expressed in terms of a
series

W"j\ h# � s
�

m�M9

s
�

n�N9

Amn8m"j#cn"h# "5#
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where 8m"j# and cn"h# are the appropriate admissible functions which satisfy at least the geometric
boundary conditions\ and if possible\ all the boundary conditions in the RayleighÐRitz method[
Amn are the unknown coe.cients[ M9 and N9 are the beginning orders of the admissible functions
8m"j# and cn"h#\ respectively\ and are decided by the practical case to be investigated[

Substituting eqn "5# into eqn "4# and minimizing the total potential energy of the plate with
respect to the coe.cients Amn as follows

1

1Amn

"Umax−Tmax# � 9 "6#

will lead to the next eigenfrequency equation

s
�

m�M9

s
�

n�N9

ð"0−a#3Cmnij−V1EÞmiFÞnjŁAmn � 9\ i\ � M9\ M9¦0\ M9¦1\ [ [ [ \ �

j � N9\ N9¦0\ N9¦1\ [ [ [ \ � "7#

where

Cmnij � E "1\1#
mi F "9\9#

nj ¦1g1"0−n#E "0\0#
mi F "0\0#

nj ¦g3E "9\9#
mi F "1\1#

nj

¦ng1"E "9\1#
mi F "1\9#

nj ¦E "1\9#
mi F "9\1#

nj #\ V1 � rh9v
1A3:D9

EÞmi � g
0

a

js8m8i dj\ FÞnj � g
0

b

htcncj dh "8#

in which\

E "p\q#
mi � g

0

a

j2s"dp8m:djp#"dq8i:djq# dj

F "p\q#
nj � g

0

b

h2t"dpcn:dhp#"dqcj:dhq# dh\ p\ q � 9\ 0\ 1 "09#

Truncating m\ n\ i\ j in eqn "7#\ the solution yields the eigenfrequencies of the free vibration of the
plate together with the coe.cients for the modal shape "5#[

2[ A set of static beam functions

A unit width of strip is taken out as a beam with the same variation of the depth as the
rectangular plate in one or the other direction[ Without loss of generality\ only a strip in the x
direction is considered here because the tapered plate investigated is with similar thickness vari!
ations in both directions[ It is well known that the static de~ection z of the non!uniform beam
under a static load q"x# must satisfy the governing di}erential equation

d1

dx1 0EI"x#
d1z

dx11� s
Kx

k�0

pkd"x−xk#¦q"x# "00#
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where EI � EI9"x:a#2s is the ~exural rigidity of the beam and EI9 is that at x � 9[ pk are the reaction
forces of the kth intermediate point supports of the beam[ d"x−xk# are the Dirac delta functions[
Taking jk � xk:a\ Pk � pka

2:EI9 and Q"j# � q"aj#a3:EI9\ eqn "00# becomes

d1

dj1 0j2s d1z

dj11� s
Kx

k�0

Pkd"j−jk#¦Q"j# "01#

Correspondingly\ the intermediate support conditions of the beam are

z"jk# � 9\ k � 0\ 1\ [ [ [ \ Kx "02#

and the boundary conditions of the beam are

"L0z#j�a � 9\ "L1z#j�a � 9\ "L2z#j�0 � 9\ "L3z#j�0 � 9 "03#

where Lj " j � 0\ 1\ 2\ 3# are the di}erential operator describing the boundary conditions of the
beam[ For example\ if the beam is clamped at the left end one has L0 � 0\ L1 � d:dj\ if the beam
is simply supported at the left end one has L0 � 0\ L1 � j2s d1:dj1 and if the beam is free at the left
end one has L0 � j2s d1:dj1\ L1 � d"j2s d1:dj1#:dj[ Identically\ the di}erential operators L2 and L3

can also be given according to the boundary conditions of the beam at the right end[
An arbitrary load Q"j# can be expanded into a Taylor series as follows

Q"j# � s
�

i�9

Qi"j−jc#i � s
�

i�9

Qi s
i

k�9

"−0#i−kCi
kj

i−k
c jk "04#

where Qi are the undetermined constants which may be decided uniquely if Q"j# is given[ jc is the
expanding point of the Taylor series and Ci

k � i;:k;"i−k#;[
Substituting eqn "04# into eqn "01#\ the static solution of the tapered beam may be written in

the form of

z"j# � s
�

i�9

Qizi"j# "05#

According to the theory of linear di}erential equation\ the general solution of eqn "01# must be
made up of two parts] homogeneous solution and special solution for every i\ i[e[

zi"j# � z¹i"j#¦z½i"j# "06#

and the special solution z½i"j# may be further written as follows

z½i"j# � s
Kx

k�0

Pi
kz½

k
p "j#¦ s

i

k�9

CÞi
kz½

k
q "j# "07#

where Pi
k � Pk:Qi and CÞi

k �"−0#i−kCi
kj

i−k
c :"k¦0#"k¦1#[

Solving di}erential equation "01#\ the homogeneous solution z¹i"j# are obtained as follows

z¹i"j# � bi
9¦bi

0j¦bi
1j

−2s¦1¦bi
2j

−2s¦2\ for s � 0:2\ 1:2\ 0

z¹i"j# � bi
9¦bi

0j¦bi
1j"ln j−0#¦bi

2j
1\ for s � 0:2
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z¹i"j# � bi
9¦bi

0j¦bi
1 ln j¦bi

2j"ln j−0#\ for s � 1:2

z¹i"j# � bi
9¦bi

0j¦bi
1:j¦bi

2 ln j\ for s � 0 "08#

where bi
j" j � 9\ 0\ 1\ 2# are the unknown constants[ The special solution z½ k

p "j# are obtained as
follows

z½ k
p "j# �

0
1−2s

"j2−2s:"2−2s#−jkj
1−2s:"0−2s#¦j1−2s

k j:"0−2s#

−j2−2s
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z½ k
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z½ k
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z½ k
p "j# � "ln"jk:j#−jk:1j¦j:1jk#U"j−jk#\ for s � 0 "19#

where U"j−jk# are the Heaviside functions\ and the special solution z½ k
q "j# are also obtained as

follows

z½ k
q "j# � jk¦3−2s:"k¦2−2s#"k¦3−2s#\ for k � 2s−2\ 2s−3

z½ k
q "j# � j"ln j−0#\ for k � 2s−2

z½ k
q "j# � −ln j\ for k � 2s−3 "10#

2[0[ The truncated beam

For a truncated tapered beam without rigid body motion\ the reaction forces
Pi

k"k � 0\ 1\ [ [ [ \ Kx# of the intermediate point supports and the unknown constants
bi

j" j � 9\ 0\ 1\ 2# may be uniquely decided by the boundary conditions and the zero displacement
conditions at the intermediate point supports and the solution may be written in the matrix form
of

$
A D

F G% $
Bi

Pi%� $
−Ri

−Si% "11#

where A is a Kx×3 matrix\ D is a Kx×Kx matrix and Ri is a Kx×0 matrix\ which correspond\

respectively\ to the values of z½i"j#\ z½k
p "j#"k � 0\ 1\ [ [ [ \ Kx# and s

i

k�9

CÞi
kz½

k
q "j# at the intermediate point

supports of the beam and can be\ respectively\ written as follows
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A �
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F is a 3×3 matrix\ G is a 3×Kx matrix and Si is a 3×0 matrix\ which correspond\ respectively\ to
those in the boundary conditions of the truncated beam[ For example\ for a simplyÐsimply
supported beam one has

F �
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F �
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where

z½�k
p "0# � "d1z½ k

p "j#:dj1#j�0 "k � 0\ 1\ [ [ [ \ Kx#

and

z½�k
q "a# � "d1z½ k

q "j#:dj1#j�a\ z½�k
q "0# � "d1z½ k

q "j#:dj1#j�0 "k � 9\ 0\ 1\ [ [ [ \ i#

Similarly\ the matrices F\ G and Si for other types of boundary conditions may also be given if one
wishes[ Bi and Pi are the unknown coe.cient matrices
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Bi � ðbi
9\ bi

0\ bi
1\ bi

2ŁT\ Pi � ðPi
0\ Pi

1\ [ [ [ \ Pi
Kx

ŁT "18#

2[1[ The sharp ended beam

For a sharp ended beam\ the sharp end cannot sustain a bending moment or a shearing force\
hence one has

bi
1 � 9\ bi

2 � 9 "29#

and the de~ection and the rotational angle of the beam should be _nite at the sharp end[ So there
is a limit to the beginning order of the Taylor series of loads in eqn "04# as follows

i\ k × 2s−2 "20#

therefore\ eqns "04# and "05# should be\ respectively\ rewritten as follows

Q"j# � s
�

i�J9

Qi s
i

k�J9

"−0#i−kCi
kj

i−k
c jk "21#

z"j# � s
�

i�J9

Qizi"j# "22#

in which\

J9 � max"Int"2s−1#\ 9# "23#

where Int is the integer function[ In this case\ the matrix A is a Kx×1 matrix as follows

A �

K

H

H

H

H

k

0 j0

0 j1

* *

0 jKx

L

H

H

H

H

l

"24#

and the matrix Ri becomes

Ri �

K

H

H

H

H

H

H

H

H

k

s
i
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CÞi
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k
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s
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CÞi
kz½

k
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s
i
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CÞi
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k
q "jKx

#

L

H

H

H

H

H

H

H

H

l

"25#

and F is a 1×1 matrix\ G is a 1×Kx matrix and Si is a 1×0 matrix\ which are decided by the
boundary conditions of the beam at the end j � 0[ For example\ for a cantilevered beam with a
sharp end one has
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Similarly\ the matrices F\ G and Si for other types of boundary conditions can also be established[

2[2[ The tapered beam with ri`id body motions

By solving eqn "11#\ the unknown constants bi
j" j � 9\ 0\ 1\ 2# and the reaction forces

Pi
k"k � 0\ 1\ [ [ [ \ Kx# of the intermediate point supports may be uniquely decided[ However\ for a

beam with rigid motions\ the unknown coe.cients in eqn "11# cannot be decided upon by the
approach described above[ In this case\ the total displacement of the beam may be considered as
the sum of rigid body motions and the de~ection of the beam[ For example\ for a freeÐfree
truncated beam with one intermediate point support at j � j0\ the rigid body rotation of the beam
around the point support exists[ One may rewrite eqn "05# as follows

z"j# � s
�

i� −0

Qizi"j# "39#

in which\

z−0"j# � j0−j "30#

and the other zi"j# "i � 9\ 0\ 1\ [ [ [ # are those of the free!simply supported "or simply supported!
free# truncated beam with a corresponding intermediate point support[ Similarly\ for a freeÐfree
sharp ended beam with one intermediate point support at j � j0\ one can rewrite eqn "22# as
follows

z"j# � s
�

i�J9−0

Qizi"j# "31#

in which\

zJ9−0"j# � j0−j "32#

and other zi"j# "i � J9\ J9¦0\ J9¦1\ [ [ # are those of the free!simply supported sharp ended beam
with a corresponding intermediate point support[ For the tapered beam with rigid body motions
but without an intermediate point support\ the handling method has been described by Zhou and
Cheung "0886#[ It may be seen from eqn "11# that only one inverse calculation to the coe.cient
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matrix is needed since the matrices A\ D\ F and G are all independent of the series variation i[ This
greatly reduces the computational cost[

3[ Numerical examples

In order to demonstrate the accuracy\ convergency and applicability of the present models\ some
numerical results are tabulated and compared with the values available in the literature[ Four
capital letters are used to represent the boundary conditions of the plate[ The _rst two letters
express the boundary conditions of the plate in the x direction and the last two express those in
the y direction[ S implies a simply supported edge\ C a clamped edge\ and F a free edge[ In all the
numerical computations\ the expanding point of the Taylor series is taken as the midpoint of the
beam\ i[e[ jc �"0¦a#:1 and the Poisson|s ratio n � 9[2[

The convergency study and comparison tests for a simply supported square plate with a linearly
varying thickness in the x direction are carried out[ The truncation factor and the taper factor of
the plate are taken as a � 4:6\ s � 0^ a � 4:5\ s � 0 and a � 9\ s � 9 "uniform plate#\ respectively[
The number of terms of the static beam functions varies from 0Ð5 in each direction[ The _rst eight
dimensionless eigenfrequencies are listed in Table 0 and compared with those obtained by the
di}erential quadrature method "Bert and Malik\ 0885# and the RayleighÐRitz method with the
one!dimensional orthogonal polynomials as the admissible functions "Bhat et al[\ 0889#[ Good
agreement is achieved[

The secondary convergency study is for a two!direction\ linearly tapered square plate with a
mid!line support in each direction[ The truncation factors are the same in both directions and are
equal to 1:2[ Three types of boundary conditions are considered] simply supported edges\ fully
clamped edges\ and two opposite edges simply supported with the other two opposite edges
clamped[ The _rst eight dimensionless eigenfrequencies are listed in Table 2 for the di}erent
numbers of terms of the static beam functions[

It can be observed from Tables 1 and 2 that the convergency is very rapid and rather accurate
results can be obtained\ even though only one term of the static beam function is used in each
direction to determine the fundamental eigenfrequency for the _rst example or two terms of the
static beam functions in each direction are used to determine the _rst four eigenfrequencies for
both examples[

It should be noted that the usable number of terms of the static beam functions is limited since
the calculation is carried out numerically[ A lot of numerical examples show that the maximum
term number "in this range\ the stable solutions are constantly obtained# of the static beam
functions is somewhat sensitive to the expanding point jc of the Taylor series[ The farther the
expanding point is from the midpoint of the beam\ the smaller will be the maximum term number\
especially for the beam with a larger truncation factor[ However\ if the midpoint of the beam is
taken as the expanding point of the Taylor series\ namely jc �"0¦a#:1\ the maximum term number
of the static beam functions is the largest and independent of the truncation factor of the beam[
In this case\ the convergency rate is also the fastest[

Next\ sets of _rst!time presented data are tabulated for the one!direction or two!direction\
linearly or parabolically tapered rectangular plates with one or two intermediate line supports in
one or two directions[ The _rst four dimensionless eigenfrequencies are given[ Four terms of the
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Table 1
The convergency and comparison studies of the dimensionless eigenfrequencies Vi "i � 0\ 1\ [ [ [ \ 7# for a simply supported
square plate with a linearly varying thickness in one direction

a\ s m×n V0 V1 V2 V3 V4 V5 V6 V7

4:6\ 0 0×0 05[898
1×1 05[764 31[110 31[249 56[888
2×2 05[756 31[110 31[228 56[799 74[242 75[034 000[44 000[53
3×3 05[756 30[873 31[986 56[329 74[242 75[016 000[08 000[43
4×4 05[756 30[873 31[985 56[314 72[303 73[031 098[35 098[62
5×5 05[756 30[872 31[985 56[313 72[303 73[024 098[33 098[62

Bert "0885# 05[753 30[867 31[989 56[300 72[271 73[093
Bhat "0889# 05[753 39[438 31[981 56[301 72[775 73[257

4:5\ 0 0×0 07[988
1×1 07[977 34[287 34[328 61[665
2×2 07[979 34[285 34[323 61[601 81[124 83[380 008[59 008[53
3×3 07[979 34[039 34[065 61[298 81[124 81[374 008[26 008[38
4×4 07[979 34[039 34[065 61[296 89[005 89[240 006[37 006[46
5×5 07[979 34[028 34[064 61[295 89[005 89[238 006[36 006[46

Bert "0885# 07[966 34[023 34[069 61[182 89[971 89[204
Bhat "0889# 07[966 34[023 34[060 61[183 89[523 89[666

9\ 9 0×0 08[640
1×1 08[640 38[527 38[527 68[305
2×2 08[632 38[525 38[525 68[305
3×3 08[632 38[244 38[244 67[861 090[96 090[96 029[32 029[32
4×4 08[632 38[244 38[244 68[861 87[622 87[622 017[24 017[24
5×5 08[632 38[243 38[243 67[860 87[622 87[622 017[24 017[24
Exact 08[628 38[237 38[237 67[846 87[585 87[585 017[29 017[29
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Table 2
The convergence study of the dimensionless eigenfrequencies Vi "i � 0\ 1\ [ [ [ \ 7# for a two!direction\ linearly tapered
square plate with a mid!line support in each direction and the same truncation factors in both directions

Edges m×n V0 V1 V2 V3 V4 V5 V6 V7

SSÐSS 0×0 55[279
1×1 49[224 53[916 54[038 70[881
2×2 49[219 52[881 54[097 70[896 039[83 030[18 063[25 063[45
3×3 49[112 52[600 53[750 70[189 012[61 012[68 041[03 041[22
4×4 49[122 52[694 53[744 70[165 012[16 012[18 040[42 040[67
5×5 49[111 52[583 53[736 70[149 008[88 019[92 036[44 036[11
6×6 49[111 52[582 53[735 70[136 008[84 008[88 036[38 036[55

CCÐCC 0×0 75[373
1×1 57[008 75[298 76[262 098[10
2×2 57[002 75[172 76[248 098[06 061[65 062[93 198[62 198[62
3×3 57[947 75[929 76[059 097[51 043[12 043[79 076[37 076[81
4×4 57[943 75[901 76[031 097[48 041[77 042[38 074[67 075[30
5×5 57[938 74[857 76[090 097[37 036[36 037[90 068[04 068[67
6×6 57[938 74[856 76[988 097[36 036[32 036[87 068[00 068[63

SCÐCC 0×0 66[980
1×1 48[487 63[856 66[795 85[863
2×2 48[472 63[817 66[673 85[803 036[73 055[47 068[57 194[77
3×3 48[495 63[479 66[488 85[167 029[18 037[43 047[67 053[97
4×4 48[494 63[462 66[473 85[144 018[68 036[10 047[03 052[76
5×5 48[490 63[444 66[443 85[083 015[66 030[33 043[32 050[16
6×6 48[490 63[443 66[440 85[089 015[61 030[30 043[27 059[32
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Table 3
The dimensionless eigenfrequencies Vi "i � 0\ 1\ 2\ 3# for a one!direction\ linearly tapered rectangular plate with a mid!
line support in the taper direction

a Edges V0 V1 V2 V3

9[4 SSÐSS 42[334 64[677 013[26 025[80
CCÐCC 73[490 006[44 063[71 068[57
FCÐFF 7[4983 10[570 33[788 55[584
FSÐFF 6[8212 10[445 25[933 44[088

9[5 SSÐSS 48[297 68[990 039[02 041[57
CCÐCC 82[899 011[00 084[81 191[03
FCÐFF 7[6435 12[364 37[315 62[901
FSÐFF 7[0207 12[215 27[050 48[697

9[6 SSÐSS 53[760 71[275 044[48 056[75
CCÐCC 092[25 015[67 105[43 113[04
FCÐFF 8[9031 14[146 40[643 66[942
FSÐFF 7[2308 14[973 39[075 53[193

9[8 SSÐSS 69[942 75[949 069[62 071[17
CCÐCC 001[18 020[71 124[55 134[64
FCÐFF 8[1709 16[916 43[788 79[689
FSÐFF 7[4591 15[720 31[030 56[818

9[8 SSÐSS 63[669 89[009 074[11 084[11
CCÐCC 019[39 026[32 143[41 155[50
FFÐFF 8[4407 17[676 46[763 73[445
FSÐFF 7[6726 17[457 33[930 69[140
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Table 4
The dimensionless eigenfrequencies Vi "i � 0\ 1\ 2\ 3# for a one!direction\ linearly tapered rectangular plate with a line
support at one third of the side length from the small thickness edge in the taper direction

a Edges V0 V1 V2 V3

9[4 SSÐSS 42[065 75[628 007[66 035[16
CCÐCC 89[134 013[72 046[52 195[37
FCÐFF 02[716 29[614 25[004 49[440
FSÐFF 00[544 13[814 29[914 31[138

9[5 SSÐSS 44[609 86[016 014[98 044[78
CCÐCC 83[791 039[93 055[28 115[49
FCÐFF 03[374 22[786 27[901 42[062
FSÐFF 01[033 15[569 21[899 33[631

9[6 SSÐSS 47[045 095[67 021[96 052[98
CCÐCC 88[037 042[95 066[21 127[43
FCÐFF 04[025 26[913 28[762 44[792
FSÐFF 01[523 17[278 24[549 36[243

9[7 SSÐSS 59[427 004[38 028[84 058[69
CCÐCC 092[24 052[30 089[76 138[97
FCÐFF 04[665 39[987 30[690 47[346
FSÐFF 02[011 29[973 27[153 49[099

9[8 SSÐSS 51[758 012[04 037[68 065[99
CCÐCC 096[32 060[71 195[15 148[90
FCÐFF 05[395 32[000 32[493 50[036
FSÐFF 02[593 20[646 39[639 41[870
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Table 5
The dimensionless eigenfrequencies Vi "i � 0\ 1\ 2\ 3# for a one!direction\ parabolically tapered rectangular plate with a
mid!line support in the taper direction

a Edges V0 V1 V2 V3

a SSÐSS 23[392 52[683 64[735 76[324
CCÐCC 41[703 86[363 098[42 001[39
FCÐFF 6[0938 04[136 20[577 30[017
FSÐFF 5[6202 04[076 16[310 28[367

9[5 SSÐSS 31[587 57[780 85[751 097[65
CCÐCC 55[278 095[83 027[39 028[86
FCÐFF 6[5337 06[844 26[387 41[184
FSÐFF 6[0755 06[757 20[138 35[206

9[6 SSÐSS 40[536 63[967 008[85 021[16
CCÐCC 70[036 003[81 058[91 062[06
FCÐFF 7[0764 19[728 32[393 53[377
FSÐFF 6[5315 19[608 23[846 42[209

9[7 SSÐSS 50[931 68[697 034[95 046[37
CCÐCC 85[763 012[90 191[47 198[93
FCÐFF 7[6211 12[787 38[292 63[048
FSÐFF 7[9876 12[630 27[595 59[752

9[8 SSÐSS 69[305 75[173 060[78 072[11
CCÐCC 001[81 021[96 126[71 136[24
FCÐFF 8[1670 16[020 44[980 70[904
FSÐFF 7[4436 15[822 31[131 57[959

Table 6
The dimensionless eigenfrequencies Vi "i � 0\ 1\ 2\ 3# for a sharp ended\ linearly tapered rectangular plate with one
intermediate line support in the taper direction

j0 Edges V0 V1 V2 V3

0:3 FCÐFF 04[982 19[461 10[871 29[908
FSÐFF 7[8414 07[519 19[030 15[063

0:1 FCÐFF 8[1163 03[230 14[567 16[688
FSÐFF 7[7118 03[293 13[119 15[492

2:3 FCÐFF 5[4525 01[425 07[775 14[306
FSÐFF 5[3259 01[497 07[467 14[203
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Table 7
The dimensionless eigenfrequencies Vi "i � 0\ 1\ 2\ 3# for a two!direction\ linearly tapered square plate with a mid!line
support in each direction and the same truncation factors in both directions

a � b Edges V0 V1 V2 V3

9[4 SSÐSS 24[767 49[902 40[183 60[396
CCÐCC 37[039 56[314 57[540 84[452
FCÐFC 8[8644 29[971 22[204 32[316
FSÐFS 8[6403 15[502 16[530 24[358
FFÐFF 6[5843 00[978 01[273 05[542

9[5 SSÐSS 33[249 47[970 48[222 66[193
CCÐCC 48[762 67[314 68[523 092[14
FCÐFC 00[834 21[132 39[777 41[147
FSÐFS 00[518 20[755 21[801 32[762
FFÐFF 7[6039 02[942 02[839 07[404

9[6 SSÐSS 42[086 55[509 56[567 72[315
CCÐCC 61[119 78[815 89[876 000[31
FCÐFC 03[969 33[893 37[685 50[738
FSÐFS 02[540 26[270 27[368 42[115
FFÐFF 8[7932 04[008 04[526 19[431

9[7 SSÐSS 51[008 64[549 65[226 89[259
CCÐCC 73[651 091[90 091[62 019[37
FCÐFC 05[249 41[887 46[997 61[130
FSÐFS 04[706 32[063 33[234 52[389
FFÐFF 09[860 06[134 06[369 11[656

9[8 SSÐSS 69[689 74[982 74[205 87[343
CCÐCC 85[837 003[51 003[76 020[97
FCÐFC 07[671 50[361 54[401 72[358
FSÐFS 07[013 38[141 49[409 63[526
FFÐFF 01[103 08[285 08[327 14[112



Y[ K[ Cheun`\ Z[ Din` : International Journal of Solids and Structures 25 "0888# 032Ð055 050

Table 8
The dimensionless eigenfrequencies Vi "i � 0\ 1\ 2\ 3# for a two!direction\ linearly tapered square plate with a line support
at one third of the side length from the small thickness edge in each direction and the same truncation factors in both
directions

a � b Edges V0 V1 V2 V3

9[4 SSÐSS 23[311 52[376 53[243 62[236
CCÐCC 35[820 74[322 75[081 84[412
FCÐFC 06[333 17[504 17[663 37[341
FSÐFS 05[829 13[914 13[412 26[984
FFÐFF 4[9623 03[833 04[038 08[111

9[5 SSÐSS 26[893 63[649 64[902 82[298
CCÐCC 40[561 099[22 099[32 010[14
FCÐFC 10[483 23[196 23[163 42[312
FSÐFS 19[527 17[583 17[676 30[943
FFÐFF 4[7120 05[649 06[089 12[689

9[6 SSÐSS 30[334 74[327 74[424 097[00
CCÐCC 45[369 002[11 002[48 026[68
FCÐFC 15[971 39[993 39[264 47[455
FSÐFS 13[401 22[251 22[739 34[148
FFÐFF 5[5431 07[619 08[158 17[895

9[7 SSÐSS 34[946 84[605 84[644 008[50
CCÐCC 50[232 014[91 014[34 044[81
FCÐFC 29[778 35[042 35[777 52[815
FSÐFS 17[424 27[128 28[273 38[791
FFÐFF 6[4520 19[740 10[331 23[385

9[8 SSÐSS 37[634 094[50 094[51 021[93
CCÐCC 55[299 025[13 025[51 064[54
FCÐFC 24[884 41[553 42[656 58[450
FSÐFS 21[587 32[303 34[073 43[729
FFÐFF 7[4347 12[028 12[618 39[415
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Table 09
The dimensionless eigenfrequencies Vi "i � 0\ 1\ 2\ 3# for a two!direction\ linearly tapered square plate with a mid!line
support in each direction and the unequal truncation factors in two directions

a\ b Edges V0 V1 V2 V3

9[4\ 9[5 SSÐSS 28[890 41[592 45[499 63[152
CCÐCC 42[589 69[695 65[923 88[231
FCÐFC 09[817 22[232 26[932 35[127
FSÐFS 09[550 17[434 29[633 28[174
FFÐFF 7[0810 01[923 02[014 06[469

9[5\ 9[6 SSÐSS 37[475 50[923 53[436 79[161
CCÐCC 54[653 71[033 76[996 096[16
FCÐFC 01[863 39[615 33[713 44[686
FSÐFS 01[598 22[763 25[126 37[100
FFÐFF 8[1332 03[943 03[641 08[409

9[6\ 9[7 SSÐSS 46[387 58[887 61[747 75[734
CCÐCC 67[138 83[197 87[156 004[77
FCÐFC 04[064 37[454 41[831 55[989
FSÐFS 03[691 28[491 30[882 47[935
FFÐFF 09[261 05[043 05[407 10[529

9[7\ 9[8 SSÐSS 55[210 68[413 70[287 83[225
CCÐCC 89[546 096[99 098[65 014[58
FCÐFC 06[420 45[790 50[261 66[015
FSÐFS 05[826 34[318 37[915 57[658
FFÐFF 00[465 07[185 07[308 12[853
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Table 00
The dimensionless eigenfrequencies Vi "i � 0\ 1\ 2\ 3# for a one!direction\ linearly tapered rectangular plate with two
equally spaced intermediate line supports in the taper direction

a Edges V0 V1 V2 V3

9[4 SSÐSS 001[94 042[80 076[92 151[84
CCÐCC 065[55 105[56 179[16 262[54
FCÐFF 04[878 32[789 71[919 005[42
FSÐFF 04[892 32[774 63[810 099[45
FFÐFF 02[303 07[115 32[708 47[482

9[5 SSÐSS 015[85 051[77 083[28 290[20
CCÐCC 088[11 121[43 175[82 318[93
FCÐFF 06[927 37[718 77[858 016[14
FSÐFF 05[828 37[710 68[503 097[52
FFÐFF 03[166 08[350 37[608 59[534

9[6 SSÐSS 030[26 069[55 191[70 228[13
CCÐCC 110[17 138[19 182[82 373[26
FCÐFF 07[985 42[637 84[373 026[63
FSÐFF 06[874 42[627 72[741 005[21
FFÐFF 04[038 19[583 42[464 51[609

9[7 SSÐSS 044[94 067[09 102[21 265[51
CCÐCC 130[95 156[08 290[51 428[43
FCÐFF 08[047 47[541 090[54 036[65
FSÐFF 08[924 47[539 76[650 012[58
FFÐFF 05[917 10[810 47[247 53[710
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Table 01
The dimensionless eigenfrequencies Vi "i � 0\ 1\ 2\ 3# for a two!direction\ linearly tapered square plate with two equally
spaced intermediate line supports in each direction and the same truncation factors in both directions

a � b Edges V0 V1 V2 V3

9[4 SSÐSS 69[019 84[229 85[555 004[28
CCÐCC 81[264 001[42 004[52 039[44
FCÐFC 07[350 43[357 46[370 60[023
FSÐFS 07[285 15[158 41[890 46[007
FFÐFF 07[237 14[833 15[151 24[885

9[5 SSÐSS 89[172 003[61 005[92 025[97
CCÐCC 006[23 026[11 039[40 052[94
FCÐFC 12[087 57[428 60[441 89[399
FSÐFS 12[055 53[352 54[736 79[602
FFÐFF 11[863 18[578 29[933 27[272

9[6 SSÐSS 001[08 023[41 024[60 047[34
CCÐCC 031[17 053[15 055[77 077[52
FCÐFC 17[333 72[478 75[595 000[68
FSÐFS 17[288 65[840 67[034 87[035
FFÐFF 17[901 22[560 23[930 39[774

9[7 SSÐSS 024[06 043[36 044[39 065[72
CCÐCC 055[96 081[85 083[29 106[80
FCÐFC 23[086 88[466 091[50 023[89
FSÐFS 23[025 78[726 89[805 005[68
FFÐFF 22[231 26[810 27[149 32[474
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static beam functions are used in the direction with one or no intermediate line support and _ve
terms of the static beam functions in the direction with two intermediate line supports[

First a one!direction\ tapered rectangular plate with one intermediate line support in the taper
direction is investigated[ The aspect ratio of the plate is G � 1[ The results for the linearly tapered
plate with a line support\ respectively\ at the middle and one third of the side length from the small
thickness edge are listed in Tables 3 and 4\ and the results for the parabolically tapered plate with
a mid!line support are listed in Table 5[ The combinations of four types of boundary conditions]
SSÐSS\ CCÐCC\ FCÐFF and FSÐFF and _ve di}erent truncation factors varying from 9[4Ð9[8 are
considered[ Also the results for a sharp ended plate with a linear taper and one intermediate line
support are listed in Table 6[ The combinations of two types of boundary conditions] FCÐFF and
FSÐFF and three di}erent locations of the line support] the middle\ one third and two thirds of
the side length from the sharp edge are considered[

Secondly a two!direction\ linearly tapered square plate with one intermediate line support in
each direction is investigated[ The locations of the line supports are symmetric in both directions[
The results for the plate with a line support\ respectively\ at the middle and one third of the side
length from the small thickness edge in each direction are listed in Tables 7 and 8[ The combinations
of _ve types of boundary conditions] SSÐSS\ CCÐCC\ FCÐFC\ FSÐFS and FFÐFF and _ve di}erent
truncation factors varying from 9[4Ð9[8 in both directions are considered[ The results for the plate
with a mid!line support in each direction but with di}erent truncation factors in two directions
are listed in Table 09[ The combinations of _ve types of boundary conditions and four groups of
di}erent truncation factors] 9[4\ 9[5^ 9[5\ 9[6^ 9[6\ 9[7 and 9[7\ 9[8 are considered[

Thirdly\ a one!direction\ linearly tapered rectangular plate with two equally spaced intermediate
line supports in the taper direction is investigated[ The aspect ratio of the plate is G � 2[ The
results for the combinations of _ve types of boundary conditions] SSÐSS\ CCÐCC\ FCÐFF\ FSÐ
FF and FFÐFF and four di}erent truncation factors varying from 9[4Ð9[7 are listed in Table 00[

Finally\ a two!direction\ linearly tapered square plate with two equally spaced intermediate line
supports in each direction is investigated[ The truncation factors are the same in both directions[
The results for the combinations of _ve types of boundary conditions] SSÐSS\ CCÐCC\ FCÐFC\
FSÐFS and FFÐFF and four di}erent truncation factors varying from 9[4Ð9[7 are listed in Table
01[

It can be seen from the tables that the eigenfrequencies always increase with the increase in the
truncation factors of the plate[ This behavior is expected because with the increase in the truncation
factors\ the rigidity of the plate also increases[

4[ Conclusions

A new set of admissible functions is developed from the static solution of a tapered beam with
intermediate point supports under a Taylor series of loads and applied to analyze the free vibration
of tapered rectangular plates with intermediate line supports in one or two directions[ Consistent
convergency can be obtained by taking the midpoint of the beam as the expanding point of the
Taylor series[ The RayleighÐRitz method is adopted to derive the eigenfrequency equation[ The
convergency studies show that good accuracy can be obtained and only a small number of terms
of the static beam functions needs to be used[ Sets of the _rst!time presented results are tabulated
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for the one!direction or two!direction tapered rectangular plates with one or two intermediate line
supports in one or two directions in Tables 2Ð01[ The numerical results provide valuable infor!
mation for engineers in design applications and may also serve as benchmarks for further reference[
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