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Abstract

The free vibrations of a wide range of tapered rectangular plates with an arbitrary number of intermediate
line supports in one or two directions are investigated. The domain of the plate is bounded by x = aa,
a0 <a<1)and y = pb, b(0 < f < 1) in the rectangular co-ordinates. The thickness of the plate is con-
tinuously varying and proportional to a power function x°y’. A variety of tapered rectangular plates can be
described by giving the taper factors s and ¢ various values. The intermediate line supports run parallel to
the edges of the plate. A new set of admissible functions, which are the static solutions of the tapered beam
with intermediate point supports, or a strip taken from the plate structure in one or the other direction
under a Taylor series of loads, is developed. Consistent convergency independent of the truncation factors
o and f of the plate can be obtained by taking the midpoint of the beam as the expanding point of the
Taylor series. Unlike conventional admissible functions, this set of static beam functions can appropriately
vary with the thickness variation of the plate. The eigenfrequency equation of the plate is derived by the
Rayleigh—Ritz approach. A general computer program has been compiled. It can be seen that the convergency
of the numerical computation is very rapid and that the first few eigenfrequencies can be obtained with good
accuracy by using only a small number of terms of the static beam functions. Sets of first-time reported
eigenfrequency data are included for future reference. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

The rectangular plate is one of the most widely used structural elements in engineering. In
practical applications, intermediate line supports may be placed to reduce the magnitude of
dynamic and static stresses and displacements of the structure or satisfy special architectural and
functional requirements. It is important for the designers to understand the effect of intermediate
line supports on the dynamic behavior of the structure.
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Leissa (1973) summarized the research work on the vibration of rectangular plates before the
early 1970’s. Many of the investigations were about the uniform rectangular plates. The problem
of the vibration of plates with varying complexity has received rather less attention. Appl and
Byers (1965) analysed the fundamental frequency of a rectangular plate with all edges simply
supported and with linear thickness variation in one direction by using the method of upper and
lower bounds. Kobayashi and Sonoda (1991) applied the power series expansions to analyse the
vibration and buckling of rectangular plates with two opposite edges simply supported and linearly
varying thickness in one direction and Bert and Malik (1996) used the differential quadrature
method to investigate such plates. Soni and Sankara Rao (1974) analysed the free vibration of
rectangular plates having two opposite edges simply supported and exponentially varying thickness
in one direction by using a quintic spline technique of solution. Pulmano and Gupta (1976) used
the finite strip method to analyse the free vibration of linearly tapered rectangular plates. Bhat et
al. (1990) used the one-dimensional orthogonal polynomials to study a one-direction, linearly
tapered rectangular plate with different combinations of boundary conditions, aspect ratio and
truncation factor, and the fundamental frequency coeflicient was also determined, with excellent
accuracy, by means of the optimized Kantorovich method proposed by Laura and Cortinez (1988).
Dawe (1966) analysed the free vibration of rectangular plate with general variable thickness by
the use of the finite element method.

If intermediate supports are added to the plate, the vibratory characteristics of the structure will
change accordingly. Elishakoff and Sternberg (1979) used the modified Bolotin’s method and
Azimi et al. (1984) used the receptance method to analyse the free vibration of rectangular plates
simply supported at two opposite edges and continuous over line supports perpendicular to those
edges. Takahashi and Chishaki (1979) presented a sine series solution for the free vibration of
simply supported rectangular plates over a number of line supports in two directions. Zhou (1994)
used a set of modified vibrating beam functions, Kim and Dickinson (1987) used a set of one-
dimensional orthogonal polynomials and Liew and Lam (1991) use a set of two-dimensional
orthogonal polynomials to analyse the free vibration line supported rectangular plates in one and
two directions by the Rayleigh—Ritz method, and Cheung and Kong (1995) applied the finite strip
method to analyse such plates.

The vibration analysis of tapered rectangular plates with intermediate line supports is not yet
available in the current literature. This may be due to the difficulty in forming a simple and
adequate deflection function which can apply to the entire plate domain and satisfy both the
boundary conditions and the intermediate support conditions. This study attempts to fill this
apparent void by providing sets of first-time presented eigenfrequency data for such plates. In this
paper, the thickness of the plate to be considered is continuously varying and proportional to a
power function x’y’ which may describe a wide range of tapered rectangular plates properly by
varying the values of the taper factors s and 7. A new set of admissible functions are developed
from the static solutions of a tapered beam with intermediate point supports under an arbitrary
static load which is expanded into a Taylor series. The beam is a unit width of strip taken from
the tapered rectangular plate in the longitudinal direction or the vertical direction. Only a set of
the static beam functions in some direction should be derived because the tapered plate considered
is with a similar thickness variation in two directions. The Rayleigh—Ritz method is utilized to
obtain the eigenfrequency equation of the plate. It is demonstrated that consistent and rapid
convergency can be achieved for arbitrary truncation factors of the plate and that the first few
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eigenfrequencies may be obtained with good accuracy by using only a small number of terms of
the static beam functions.

2. The Rayleigh—Ritz method for tapered rectangular plates

A tapered rectangular plate with an arbitrary number of intermediate line supports, as shown
in Fig. 1, lies in the x—y plane and is bounded by edges x = c:a, aand y = pb, b where a (0 < a0 < 1)
and f (0 < f < 1) are referred to as truncation factors of the plate in the x and y directions,
respectively. The truncated plate is part of the sharp ended plate. The side lengths of the plate are
A and B in the x and y directions, respectively, where A = (1 —o«)a and B = (1— f)b. If the plate is
with a sharp edge in the x direction then o = 0 and if the plate is with that in the y direction then
p = 0. There are K, and K, intermediate line supports acting on the plate in the x and y directions,
respectively. The co-ordinates of the line supports in the x and y directions are x, (k = 1,2,...,K))
and y, (k =1,2,...,K)), respectively. Itisclear thatoaa < x, <a(k =1,2,...,K)and b < y, < b
(k=1,2,...,K). It is assumed that the thickness /(x,y) of the plate is described by a power
function

h(x.y) = ho(x/a)’(y/b)’ (1)

where /£, is the thickness of the plate at the point x = a, y = b. s and ¢ are referred to as taper
factors of the plate in the x and y directions, respectively. A variety of tapered plates can be
described by giving the taper factors s and ¢ values and some common tapered rectangular plates
are shown in Table 1. The flexural rigidity of the plate is
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Fig. 1. A tapered rectangular plate with intermediate line supports.
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Table 1
Some common rectangular plates with variable thickness

Type of non-uniform rectangular plates Taper factors
A uniform plate s=0,1=0

A linearly tapered plate in the x direction =1,t=

A linearly tapered plate in the y direction s=0,t=1

A linearly tapered plate in both directions s = =

A parabolically tapered plate in the x direction s=2,t=0

A parabolically tapered plate in the y direction s=0,t=2

A parabolically tapered plate in both directions s=2,t=2

3, 3
D(x,y) = Dy(x/a)*(y/b)" @)

in which, D, = Ehj/12(1 —v*) where E is the Young’s modulus and v is the Poisson’s ratio.

Assuming that the largest thickness of the plate is small compared to its boundary dimensions
and that the classical plate theory is valid, the maximum strain energy U,,, and the maximum
kinetic energy 7., of the plate are given by

ax

. 1 [ bD( ) 0* 2+2(72W(72W+ O*W\? 2(1—) OPWrW
max =5 xa - —V
2 )l 4 ox? ox* 0y? oy? ox* 0y*

FWY L[ )
- <axay> :|}dydxa Tmax_ia) J J; ph(xay)W dydx (3)

oa Jpb

where W is the modal function of the plate, w is the radian eigenfrequency of the structure and p
is the material density of the plate. Defining next non-dimensional coordinates

{=xla, n=y/b “)
and substituting eqns (1), (2) and (4) into eqn (3), one has

U _LD l 1533 3¢ 52 2_|_2 ZazWaZW_'_ 4 82 ’
max _2(13 0 ., 5 ;/I aé ’y 052 anz y 07]2

2
PWIW  [(PPWN ab
_2(1 _v)yz |:a€2 an2 - <a€ 817) :|} d’/l dé? Tmax = ?phowz J\

o

1 1
J En'w2dndé (9)
B

in which, y = a/b = I'(1—p)/(1 —a) where I' = A/B is the aspect ratio of the plate. It is assumed
that the variables in the modal function W(¢&, 5) are separable and may be expressed in terms of a
series

WEn =3 Y Apmon@an) )

m=M,n=N,
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where ¢,,(¢) and (1) are the appropriate admissible functions which satisfy at least the geometric
boundary conditions, and if possible, all the boundary conditions in the Rayleigh—Ritz method.
A,,, are the unknown coeflicients. M, and N, are the beginning orders of the admissible functions
0,,(&) and ¥, (), respectively, and are decided by the practical case to be investigated.
Substituting eqn (6) into eqn (5) and minimizing the total potential energy of the plate with
respect to the coefficients A4,,, as follows
0

87 (Umax - Tmax) = 0 (7)

will lead to the next eigenfrequency equation

Z Z [(1 _OC)4Cmnzj_QzEmlF_nj]Amn = Oa ia = M03M0+ laMO +2a s o0

m=M,n=N,
j:No, N0+1, N0+2,...,OO (8)
where

2,2 0,0 2 1,1 1.1 4 0,0 2,2
Clilnif =E}€m )F}(’l/ )+2V (I_V)Egm )F( )+V E)(ni )F( )

nj n
+? (EGPFGY + EGUVFY), QF = phyo’A* D,

1

E-mi = J é‘v(pm(pi dé, Fn/’ = J l/]tl//”l/j]- d’? (9)

B

in which,

ER? = J £4(d",,/dE") (dg;/dE?) d&

1
Fpa = J n*' (&7, [dn?) (dY,/dn?) dn, p.g =0,1,2 (10)
B

Truncating m, n, i, j in eqn (8), the solution yields the eigenfrequencies of the free vibration of the
plate together with the coefficients for the modal shape (6).

3. A set of static beam functions

A unit width of strip is taken out as a beam with the same variation of the depth as the
rectangular plate in one or the other direction. Without loss of generality, only a strip in the x
direction is considered here because the tapered plate investigated is with similar thickness vari-
ations in both directions. It is well known that the static deflection z of the non-uniform beam
under a static load ¢(x) must satisfy the governing differential equation

dx x?

d2 2\ &
Z(El(x) d) = 3 P —x)+4(9) (1)
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where EI = El,(x/a)* is the flexural rigidity of the beam and EI, is that at x = 0. p, are the reaction
forces of the kth intermediate point supports of the beam. d(x — x;) are the Dirac delta functions.
Taking &, = xi/a, P, = pua’/El, and Q(&) = q(a&)a*/El,, eqn (11) becomes

dz(é*”dzZ) = g Po(E—=E)+0(9) (12)
dé? de? k=1
Correspondingly, the intermediate support conditions of the beam are

z(&) =0, k=12,...,K, (13)
and the boundary conditions of the beam are

(L12):= =0, (L22)e=y =0, (L32)ecy =0, (L42)e=1 =0 (14)

where L; (j = 1,2,3,4) are the differential operator describing the boundary conditions of the
beam. For example, if the beam is clamped at the left end one has L, = 1, L, = d/d¢, if the beam
is simply supported at the left end one has L, = 1, L, = £*d?/d&? and if the beam is free at the left
end one has L, = £*d?/d¢&*, L* = d(&°*d?/dE?)/dE. Tdentically, the differential operators L, and L,
can also be given according to the boundary conditions of the beam at the right end.

An arbitrary load Q(¢) can be expanded into a Taylor series as follows

0 = ¥ 06=8)' = ¥ 0, ¥ (-1 Cie e (15)

where Q, are the undetermined constants which may be decided uniquely if Q(¢) is given. &, is the
expanding point of the Taylor series and Cj = i!//k!(i—k)!.

Substituting eqn (15) into eqn (12), the static solution of the tapered beam may be written in
the form of

29 = ¥ 00 (16)

According to the theory of linear differential equation, the general solution of eqn (12) must be
made up of two parts: homogeneous solution and special solution for every i, i.e.

zi(&) = 2,(9) +2(9) (17)

and the special solution z;,(¢) may be further written as follows
K\’ i
29 = Y, Pizy O+ ) Cizg(©) (18)
k=1 k=0

where Pi = P,/Q, and Ci = (—1)""FCLEF/(k+1)(k+2).
Solving differential equation (12), the homogeneous solution z;(¢) are obtained as follows

2(8) = by+ b E+DLET T4 bLETIT fors #1/3,2/3,1
Z(8) = by +b1E+05¢(InE— 1) + 0587, fors=1/3
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2(8) = by+ b e+ by InE+b5E(InE—1), fors=2/3

Z(&) = by +D1E+D5/E+ b5 Iné, fors =1 (19)
where bi(j =0,1,2,3) are the unknown constants. The special solution 2
follows

(&) are obtained as

1
) = 33 (&G =39 =G =39) + 6/ (1-39)

— &3 =3s) U(E— &), fors #1/3,2/3,1
7,8 = {(& =& 2— &< In(¢/E) U — &), fors=1/3
2,(8) = {(E+ &) In(E/&) —2(E = &) UE = &), fors =2/3
2,(&) = {In(&/&) = &/2E +&/28 U = &), fors =1 (20)

where U(¢—¢,) are the Heaviside functions, and the special solution 24 (&) are also obtained as
follows

25(E) = E 3 (k+3—3s)(k+4—3s), fork # 3s—3,3s—4
258 = E(Iné—1), fork =3s—3
2 = —In¢, fork =3s—4 Q1)

q
3.1. The truncated beam

For a truncated tapered beam without rigid body motion, the reaction forces
P.(k=1,2,...,K,) of the intermediate point supports and the unknown constants
bi(j =0,1,2,3) may be uniquely decided by the boundary conditions and the zero displacement
conditions at the intermediate point supports and the solution may be written in the matrix form

of
A D Bi _Ri
I (22)
F G Pl _SI
where 4 is a K, x4 matrix, D is a K, x K, matrix and R’ is a K, x I matrix, which correspond,

respectively, to the values of £,(¢), 25(&)(k = 1,2,...,K,) and > C.z5(¢) at the intermediate point

. . k=0
supports of the beam and can be, respectively, written as follows

1 51 é]—3s+2 él—3s+3

1 —3s5+2 —3s+3
A= . 5:2 52: 52: , fors#1/3,2/3,1

1 éK 51;\»3“— 2 élzjﬁ— 3

X
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(1 & &né -1 &
1 2 »(Ing, —1 >
PRSI I
L 1 él(\. ék\.(lnél(\._l) gq
! & Iné &(Ing —1)
1 , Iné, ,(né&, —1
A= | . é n:§ é(nf ) , fors=2/3
g g Elng—1)
1 & 1/é Ing,
1 , 1/&  Ing,
A= : é /é n:f , fors=1 (23)
L 1 5K 1/‘5& IUEKV
0 0 0 07
2,(&) 0 0 0
D= f;l(f%) Zﬁ(fz) 0 (24)
i f,l(élq) 51%(61() ff‘il(ékx) 0 ]
3 ase |
R = k;o () (25)

k;o C_;xZNI; (éKx)

Fis a4 x4 matrix, G is a 4 x K, matrix and S"is a 4 x |1 matrix, which correspond, respectively, to
those in the boundary conditions of the truncated beam. For example, for a simply—simply
supported beam one has

1 o a73.v+2 a73x+3
— _ —3s _ _ —3s+1
Fe (1) (1) ( 3s—|—2)(13s+1)oc (—3s+3)( 13s+2)oc  fors#£1/3.2/3.1
0 0 (—3s4+2)(—3s+1) (—3s4+3)(—35+2)
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1 o allna—1) o
F= 00 o , fors=1/3
11 —1 1
0 0 1 2
(1 o2 Ina a(lnoc—1)
0 0 —1/o? 1/a
F= L1 0 2 , fors=2/3
0 0 —1 1
1 o 1o Ino
0 0 2/ —1/
F L1 0 , fors (26)
00 2 —1
0 0o ... 0
c 0 0 0 ”7
() 2 2O &)
2 2O . 20
. Cezg(@)
k=0
p A
. =0
si=|" (28)
25
k=
CiZ (D)
_/:0 .
where

Zﬁ:(l) = {dzfﬁ(é)/déz}i=l (k: 112""’Kx)
and
Z(o) = {d*20(9)/d&} ., F (1) = {d*20(O)/d&} . (k=0,1,2,...,0)

Similarly, the matrices F, G and S’ for other types of boundary conditions may also be given if one
wishes. B and P' are the unknown coefficient matrices
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B' = [by, by, by, b3]", P'= [P\, P5,...,Pk]" (29)
3.2. The sharp ended beam

For a sharp ended beam, the sharp end cannot sustain a bending moment or a shearing force,
hence one has

by=0, by=0 (30)

and the deflection and the rotational angle of the beam should be finite at the sharp end. So there
is a limit to the beginning order of the Taylor series of loads in eqn (15) as follows

ik >3s—3 (31
therefore, eqns (15) and (16) should be, respectively, rewritten as follows
0 =) 0, ) (=D*Cpere (32)
i=Jy k=J,
28 = ) 0:z:(&) (33)
i=Jy
in which,
Jo = max{Int(3s—2),0} (34)
where Int is the integer function. In this case, the matrix A4 is a K, x 2 matrix as follows
1 &
1<
A= . 7 (35)
1 Sk,
and the matrix R’ becomes
Y Gz |
k=7,
| ety
R, _ . :ZJO qu(§2) (36)

Y, Gizi(ex)
Lk :JU .
and Fis a 2x2 matrix, G is a 2 x K, matrix and S’ is a 2 x 1 matrix, which are decided by the

boundary conditions of the beam at the end ¢ = 1. For example, for a cantilevered beam with a
sharp end one has
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11 37
o @)

G:[pr(l) %p(l) pr“(l)} (38)
) (1) ... (1)
Y G
oo | (39)
IREEA

Similarly, the matrices F, G and S for other types of boundary conditions can also be established.

3.3. The tapered beam with rigid body motions

By solving eqn (22), the unknown constants b{(j=0,1,2,3) and the reaction forces
Pi(k=1,2,...,K,) of the intermediate point supports may be uniquely decided. However, for a
beam with rigid motions, the unknown coefficients in eqn (22) cannot be decided upon by the
approach described above. In this case, the total displacement of the beam may be considered as
the sum of rigid body motions and the deflection of the beam. For example, for a free—free
truncated beam with one intermediate point support at & = &,, the rigid body rotation of the beam
around the point support exists. One may rewrite eqn (16) as follows

2= 3 a0 (40)
in which,
za(@) =8¢ (41)

and the other z;(¢) (i =0,1,2,...) are those of the free-simply supported (or simply supported-
free) truncated beam with a corresponding intermediate point support. Similarly, for a free—free
sharp ended beam with one intermediate point support at ¢ = &, one can rewrite eqn (33) as
follows

(9= 3 0z @)
in which,
ZJO—1(£)=51—5 (43)

and other z(&) (i = J,, Jo+1,Jy+2,..) are those of the free-simply supported sharp ended beam
with a corresponding intermediate point support. For the tapered beam with rigid body motions
but without an intermediate point support, the handling method has been described by Zhou and
Cheung (1997). It may be seen from eqn (22) that only one inverse calculation to the coefficient
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matrix is needed since the matrices 4, D, F'and G are all independent of the series variation i. This
greatly reduces the computational cost.

4. Numerical examples

In order to demonstrate the accuracy, convergency and applicability of the present models, some
numerical results are tabulated and compared with the values available in the literature. Four
capital letters are used to represent the boundary conditions of the plate. The first two letters
express the boundary conditions of the plate in the x direction and the last two express those in
the y direction. S implies a simply supported edge, C a clamped edge, and F a free edge. In all the
numerical computations, the expanding point of the Taylor series is taken as the midpoint of the
beam, i.e. £, =(1+4a)/2 and the Poisson’s ratio v = 0.3.

The convergency study and comparison tests for a simply supported square plate with a linearly
varying thickness in the x direction are carried out. The truncation factor and the taper factor of
the plate are taken as oo = 5/7, s = 1; . = 5/6, s = 1 and o = 0, s = 0 (uniform plate), respectively.
The number of terms of the static beam functions varies from 1-6 in each direction. The first eight
dimensionless eigenfrequencies are listed in Table 1 and compared with those obtained by the
differential quadrature method (Bert and Malik, 1996) and the Rayleigh—Ritz method with the
one-dimensional orthogonal polynomials as the admissible functions (Bhat et al., 1990). Good
agreement is achieved.

The secondary convergency study is for a two-direction, linearly tapered square plate with a
mid-line support in each direction. The truncation factors are the same in both directions and are
equal to 2/3. Three types of boundary conditions are considered: simply supported edges, fully
clamped edges, and two opposite edges simply supported with the other two opposite edges
clamped. The first eight dimensionless eigenfrequencies are listed in Table 3 for the different
numbers of terms of the static beam functions.

It can be observed from Tables 2 and 3 that the convergency is very rapid and rather accurate
results can be obtained, even though only one term of the static beam function is used in each
direction to determine the fundamental eigenfrequency for the first example or two terms of the
static beam functions in each direction are used to determine the first four eigenfrequencies for
both examples.

It should be noted that the usable number of terms of the static beam functions is limited since
the calculation is carried out numerically. A lot of numerical examples show that the maximum
term number (in this range, the stable solutions are constantly obtained) of the static beam
functions is somewhat sensitive to the expanding point &, of the Taylor series. The farther the
expanding point is from the midpoint of the beam, the smaller will be the maximum term number,
especially for the beam with a larger truncation factor. However, if the midpoint of the beam is
taken as the expanding point of the Taylor series, namely &, = (1 +«)/2, the maximum term number
of the static beam functions is the largest and independent of the truncation factor of the beam.
In this case, the convergency rate is also the fastest.

Next, sets of first-time presented data are tabulated for the one-direction or two-direction,
linearly or parabolically tapered rectangular plates with one or two intermediate line supports in
one or two directions. The first four dimensionless eigenfrequencies are given. Four terms of the
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Table 2
The convergency and comparison studies of the dimensionless eigenfrequencies Q, (i = 1,2, ..., 8) for a simply supported
square plate with a linearly varying thickness in one direction
o, mxn Q, Q, Q; Q, Qg Qe Q, Qg
5/7, 1 Ix1 16.909
2x2 16.875 42.221 42.350 67.999
3x3 16.867 42.221 42.339 67.800 85.353 86.145 111.55 111.64
4x4 16.867 41.984  42.097 67.430 85.353 86.127 111.19 111.54
5x5 16.867 41.984  42.096 67.425 83.414 84.142 109.46 109.73
6x6 16.867 41.983 42.096 67.424 83.414 84.135 109.44 109.73
Bert (1996) 16.864  41.978 42.090 67.411 83.382 84.104
Bhat (1990) 16.864  40.549 42.092 67.412 83.886 84.368
5/6, 1 Ix1 18.099
2x2 18.088 45.398 45.439 72.776
3x3 18.080 45.396 45.434 72.712 92.235 94.491 119.60 119.64
4x4 18.080 45.140 45.176 72.309 92.235 92.485 119.37 119.49
5x5 18.080 45.140 45.176 72.307 90.116 90.351 117.48 117.57
6x6 18.080 45.139 45.175 72.306 90.116 90.349 117.47 117.57
Bert (1996) 18.077 45.134  45.170 72.293 90.082 90.315
Bhat (1990) 18.077 45.134 45171 72.294 90.634 90.777
0,0 Ix1 19.751
2x2 19.751 49.638 49.638 79.416
3x3 19.743 49.636 49.636 79.416
4x4 19.743 49.355 49.355 78.972  101.07 101.07 130.43 130.43
5x5 19.743 49.355 49.355 79.972 98.733 98.733 128.35 128.35
6x6 19.743 49.354  49.354 78.971 98.733 98.733 128.35 128.35
Exact 19.739 49.348 49.348 78.957 98.696 98.696 128.30 128.30
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Table 3
The convergence study of the dimensionless eigenfrequencies Q; (i = 1,2,...,8) for a two-direction, linearly tapered
square plate with a mid-line support in each direction and the same truncation factors in both directions

Edges mxn Q Q, Q, Q, Q; Q, Q, Q,
SS-SS 1x1 66.380
2x2 50335 64.027  65.149  81.992
3x3 50320 63.992  65.108  81.907  140.94 14129 17436  174.56
4x4 50223 63711  64.861 81290 12372 12379  152.14 15233
5x5 50233 63.705  64.855 81276 12327 12329 15153 15178
6x6 50222 63.694  64.847 81250  119.99  120.03  147.55  147.22
Tx7 50222 63.693  64.846 81247 11995  119.99  147.49  147.66
CC-CC 1x1 86.484
2%2 63.119  86.309  87.373 109.21
3x3 68.113  86.283  87.359  109.17 172.76  173.04  209.73  209.73
4x4 63.058  86.030  87.160  108.62 15423 154.80 18748  187.92
5x5 63.054  86.012  87.142 108.59 152.88 15349 18578  186.41
6x6 68.049 85968  87.101 108.48 14747 14801  179.15  179.78
Tx7 63.049 85967  87.099 108.47 14743 14798  179.11  179.74
SC-CC 1x1 77.091
2%2 59.598 74967  77.806  96.974
3x3 59.583 74928 77784 96914  147.84  166.58  179.68  205.88
4x4 59.506  74.580  77.599  96.278  130.29  148.54  158.78  164.08
5x5 59.505  74.573  77.584 96255 12979 14721  158.14  163.87
6x6 59.501  74.555  77.554  96.194 12677 14144 15443  161.27

7x7 59.501 74.554 77.551 96.190 126.72 141.41 154.38 160.43
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Table 4
The dimensionless eigenfrequencies Q, (i = 1,2, 3,4) for a one-direction, linearly tapered rectangular plate with a mid-
line support in the taper direction

o Edges Q, Q, Q, Q,
0.5 SS-SS 53.445 75.788 124.37 136.91
cc-CcC 84.501 117.55 174.82 179.68
FC-FF 8.5094 21.681 44.899 66.695
FS-FF 7.9323 21.556 36.044 55.199
0.6 SS-SS 59.308 79.001 140.13 152.68
cc-CccC 93.900 122.11 195.92 202.14
FC-FF 8.7546 23.475 48.426 73.012
FS-FF 8.1318 23.326 38.161 59.708
0.7 SS-SS 64.871 82.386 155.59 167.86
cc-ccC 103.36 126.78 216.54 224.15
FC-FF 9.0142 25.257 51.754 77.053
FS-FF 8.3419 25.084 40.186 64.204
0.9 SS-SS 70.053 86.050 170.73 182.28
Ccc-CcC 112.29 131.82 235.66 245.75
FC-FF 9.2810 27.027 54.899 80.790
FS-FF 8.5602 26.831 42.141 67.929
0.9 SS-SS 74.770 90.110 185.22 195.22
cc-CccC 120.40 137.43 254.52 266.61
FF-FF 9.5518 28.787 57.874 84.556

FS-FF 8.7837 28.568 44.041 70.251
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Table 5

The dimensionless eigenfrequencies Q, (i = 1,2, 3,4) for a one-direction, linearly tapered rectangular plate with a line
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support at one third of the side length from the small thickness edge in the taper direction

o Edges Q, Q, Q, Q,
0.5 SS-SS 53.176 86.739 118.77 146.27
cc-ccC 90.245 124.83 157.63 206.48
FC-FF 13.827 30.725 36.115 50.551
FS-FF 11.655 24.925 30.025 42.249
0.6 SS-SS 55.710 97.127 125.09 155.89
cc-ccC 94.802 140.04 166.39 226.50
FC-FF 14.485 33.897 38.012 53.173
FS-FF 12.144 26.670 32.900 44.742
0.7 SS-SS 58.156 106.78 132.07 163.09
cc-ccC 99.148 153.06 177.32 238.54
FC-FF 15.136 37.024 39.873 55.803
FS-FF 12.634 28.389 35.650 47.354
0.8 SS-SS 60.538 115.49 139.95 169.70
cc-CccC 103.35 163.41 190.87 249.08
FC-FF 15.776 40.098 41.701 58.457
FS-FF 13.122 30.084 38.264 50.100
0.9 SS-SS 62.869 123.15 148.79 176.00
cc-CccC 107.43 171.82 206.26 259.01
FC-FF 16.406 43.111 43.504 61.147
FS-FF 13.604 31.757 40.740 52.981
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The dimensionless eigenfrequencies Q; (i = 1,2, 3,4) for a one-direction, parabolically tapered rectangular plate with a

mid-line support in the taper direction

o Edges Q, Q, Q, Q,

o SS-SS 34.403 63.794 75.846 87.435
cc-ccC 52.814 97.474 109.53 112.40
FC-FF 7.1049 15.247 31.688 41.128
FS-FF 6.7313 15.187 27.421 39.478

0.6 SS-SS 42.698 68.891 96.862 108.76
cCc-CccC 66.389 106.94 138.40 139.97
FC-FF 7.6448 17.955 37.498 52.295
FS-FF 7.1866 17.868 31.249 46.317

0.7 SS-SS 51.647 74.078 119.96 132.27
cc-CccC 81.147 114.92 169.02 173.17
FC-FF 8.1875 20.839 43.404 64.488
FS-FF 7.6426 20.719 34.957 53.310

0.8 SS-SS 61.042 79.708 145.06 157.48
cc-ccC 96.874 123.01 202.58 209.04
FC-FF 8.7322 23.898 49.303 74.159
FS-FF 8.0987 23.741 38.606 60.863

0.9 SS-SS 70.416 86.284 171.89 183.22
cCc-CccC 112.92 132.07 237.82 247.35
FC-FF 9.2781 27.131 55.091 81.015
FS-FF 8.5547 26.933 42.242 68.060

Table 7

The dimensionless eigenfrequencies Q; (i = 1,2,3,4) for a sharp ended, linearly tapered rectangular plate with one
intermediate line support in the taper direction

& Edges Q Q, Q, Q,
1/4 FC-FF 15.093 20.572 21.982 30.019
FS-FF 8.9525 18.620 20.141 26.174
1/2 FC-FF 9.2274 14.341 25.678 27.799
FS-FF 8.8229 14.304 24.220 26.503
3/4 FC-FF 6.5636 12.536 18.886 25.417
FS-FF 6.4360 12.508 18.578 25.314
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Table 8
The dimensionless eigenfrequencies Q, (i = 1,2, 3,4) for a two-direction, linearly tapered square plate with a mid-line
support in each direction and the same truncation factors in both directions

o=, Edges Q, Q, Q, Q,

0.5 SS-SS 35.878 50.013 51.294 71.407

CC-CC 48.140 67.425 68.651 95.563

FC-FC 9.9755 30.082 33.315 43.427

FS-FS 9.7514 26.613 27.641 35.469

FF-FF 7.6954 11.089 12.384 16.653

0.6 SS-SS 44.350 58.081 59.333 77.204
CC-CC 59.873 78.425 79.634 103.25

FC-FC 11.945 32.243 40.888 52.258

FS-FS 11.629 31.866 32912 43.873

FF-FF 8.7140 13.053 13.940 18.515

0.7 SS-SS 53.197 66.610 67.678 83.426
CC-CC 72.220 89.926 90.987 111.42

FC-FC 14.070 44.904 48.796 61.849

FS-FS 13.651 37.381 38.479 53.226

FF-FF 9.8043 15.119 15.637 20.542

0.8 SS-SS 62.119 75.650 76.337 90.360
CC-CC 84.762 102.01 102.73 120.48

FC-FC 16.350 52.998 57.008 72.241

FS-FS 15.817 43.174 44.345 63.490

FF-FF 10.971 17.245 17.470 22.767

0.9 SS-SS 70.790 85.093 85.316 98.454
CC-CC 96.948 114.62 114.87 131.08

FC-FC 18.782 61.472 65.512 83.469

FS-FS 18.124 49.252 50.510 74.637

FF-FF 12.214 19.396 19.438 25.223
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Table 9

The dimensionless eigenfrequencies Q; (i = 1, 2, 3, 4) for a two-direction, linearly tapered square plate with a line support
at one third of the side length from the small thickness edge in each direction and the same truncation factors in both
directions

o=, Edges Q, Q, Q, Q,

0.5 SS-SS 34.422 63.487 64.354 73.347

CcC-CcC 46.931 85.433 86.192 95.523

FC-FC 17.444 28.615 28.774 48.452

FS-FS 16.930 24.025 24.523 37.095

FF-FF 5.0734 14.944 15.149 19.222

0.6 SS-SS 37.904 74.750 75.013 93.309
cc-cc 51.672 100.33 100.43 121.25

FC-FC 21.594 34.207 34.274 53.423

FS-FS 20.638 28.694 28.787 41.054

FF-FF 5.8231 16.750 17.190 23.790
0.7 SS-SS 41.445 85.438 85.535 108.11
cc-cc 56.470 113.22 113.59 137.79

FC-FC 26.082 40.004 40.375 58.566

FS-FS 24.512 33.362 33.840 45.259

FF-FF 6.6542 18.720 19.269 28.906
0.8 SS-SS 45.057 95.716 95.755 119.61
CcCc-CccC 61.343 125.02 125.45 155.92

FC-FC 30.889 46.153 46.888 63.926

FS-FS 28.535 38.239 39.384 49.802

FF-FF 7.5631 20.851 21.442 34.496

0.9 SS-SS 48.745 105.61 105.62 132.04
CcCc-cc 66.300 136.24 136.62 175.65

FC-FC 35.995 52.664 53.767 69.561

FS-FS 32.698 43.414 45.184 54.830

FF-FF 8.5458 23.139 23.729 40.526
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Table 10
The dimensionless eigenfrequencies Q, (i = 1,2, 3,4) for a two-direction, linearly tapered square plate with a mid-line
support in each direction and the unequal truncation factors in two directions

o, f Edges Q, Q, Q, Q,

0.5,0.6 SS-SS 39.901 52.603 56.500 74.263

CC-CC 53.690 70.706 76.034 99.342

FC-FC 10.928 33.343 37.043 46.238

FS-FS 10.661 28.545 30.744 39.285

FF-FF 8.1921 12.034 13.125 17.570

0.6, 0.7 SS-SS 48.586 61.034 64.547 80.272
CC-CC 65.764 82.144 87.007 107.27

FC-FC 12.974 40.726 44.824 55.797

FS-FS 12.609 33.874 36.237 48.211

FF-FF 9.2443 14.054 14.752 19.510

0.7,0.8 SS-SS 57.498 69.998 72.858 86.845
CC-CC 78.249 94.208 98.267 115.88

FC-FC 15.175 48.565 52.942 66.090

FS-FS 14.702 39.502 41.993 58.046

FF-FF 10.372 16.154 16.518 21.630

0.8,0.9 SS-SS 66.321 79.524 81.398 94.336
CC-CC 90.657 107.00 109.76 125.69

FC-FC 17.531 56.801 61.372 77.126

FS-FS 16.937 45.429 48.026 68.769

FF-FF 11.576 18.296 18.419 23.964
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The dimensionless eigenfrequencies Q, (i = 1,2, 3,4) for a one-direction, linearly tapered rectangular plate with two

equally spaced intermediate line supports in the taper direction

o Edges Q, Q, Q, Q,
0.5 SS-SS 112.05 153.91 187.03 262.95
CC-CC 176.66 216.67 280.27 373.65
FC-FF 15.989 43.890 82.020 116.53
FS-FF 15.903 43.885 74.921 100.56
FF-FF 13.414 18.226 43.819 58.593
0.6 SS-SS 126.96 162.88 194.39 301.31
CC-CC 199.22 232.54 286.93 429.04
FC-FF 17.038 48.829 88.969 127.25
FS-FF 16.939 48.821 79.614 108.63
FF-FF 14.277 19.461 48.719 60.645
0.7 SS-SS 141.37 170.66 202.81 339.24
CC-CC 221.28 249.20 293.93 484.37
FC-FF 18.096 53.748 95.434 137.74
FS-FF 17.985 53.738 83.852 116.32
FF-FF 15.149 20.694 53.575 62.710
0.8 SS-SS 155.05 178.10 213.32 376.62
CC-CC 241.06 267.19 301.62 539.54
FC-FF 19.158 58.652 101.65 147.76
FS-FF 19.035 58.640 87.761 123.69
FF-FF 16.028 21.921 58.358 64.821
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Table 12
The dimensionless eigenfrequencies Q; (i = 1,2, 3,4) for a two-direction, linearly tapered square plate with two equally
spaced intermediate line supports in each direction and the same truncation factors in both directions

o=, Edges Q, Q, Q, Q,
0.5 SS-SS 70.120 95.330 96.666 115.39
CC-CC 92.375 112.53 115.63 140.55
FC-FC 18.461 54.468 57.481 71.134
FS-FS 18.396 26.269 52.901 57.118
FF-FF 18.348 25.944 26.262 35.996
0.6 SS-SS 90.283 114.72 116.03 136.08
CC-CC 117.34 137.22 140.51 163.05
FC-FC 23.198 68.539 71.552 90.400
FS-FS 23.166 64.463 65.847 80.713
FF-FF 22.974 29.689 30.044 38.383
0.7 SS-SS 112.19 134.52 135.71 158.45
CC-CC 142.28 164.26 166.88 188.63
FC-FC 28.444 83.589 86.606 111.79
FS-FS 28.399 76.951 78.145 98.146
FF-FF 28.012 33.671 34.041 40.885
0.8 SS-SS 135.17 154.47 155.40 176.83
CC-CC 166.07 192.96 194.30 21791
FC-FC 34.197 99.577 102.61 134.90
FS-FS 34.136 89.837 90.916 116.79

FF-FF 33.342 37.921 38.250 43.585
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static beam functions are used in the direction with one or no intermediate line support and five
terms of the static beam functions in the direction with two intermediate line supports.

First a one-direction, tapered rectangular plate with one intermediate line support in the taper
direction is investigated. The aspect ratio of the plate is I' = 2. The results for the linearly tapered
plate with a line support, respectively, at the middle and one third of the side length from the small
thickness edge are listed in Tables 4 and 5, and the results for the parabolically tapered plate with
a mid-line support are listed in Table 6. The combinations of four types of boundary conditions:
SS-SS, CC-CC, FC-FF and FS—FF and five different truncation factors varying from 0.5-0.9 are
considered. Also the results for a sharp ended plate with a linear taper and one intermediate line
support are listed in Table 7. The combinations of two types of boundary conditions: FC-FF and
FS—FF and three different locations of the line support: the middle, one third and two thirds of
the side length from the sharp edge are considered.

Secondly a two-direction, linearly tapered square plate with one intermediate line support in
each direction is investigated. The locations of the line supports are symmetric in both directions.
The results for the plate with a line support, respectively, at the middle and one third of the side
length from the small thickness edge in each direction are listed in Tables 8 and 9. The combinations
of five types of boundary conditions: SS—-SS, CC—CC, FC-FC, FS-FS and FF-FF and five different
truncation factors varying from 0.5-0.9 in both directions are considered. The results for the plate
with a mid-line support in each direction but with different truncation factors in two directions
are listed in Table 10. The combinations of five types of boundary conditions and four groups of
different truncation factors: 0.5, 0.6; 0.6, 0.7; 0.7, 0.8 and 0.8, 0.9 are considered.

Thirdly, a one-direction, linearly tapered rectangular plate with two equally spaced intermediate
line supports in the taper direction is investigated. The aspect ratio of the plate is I' = 3. The
results for the combinations of five types of boundary conditions: SS-SS, CC-CC, FC-FF, FS—
FF and FF-FF and four different truncation factors varying from 0.5-0.8 are listed in Table 11.

Finally, a two-direction, linearly tapered square plate with two equally spaced intermediate line
supports in each direction is investigated. The truncation factors are the same in both directions.
The results for the combinations of five types of boundary conditions: SS-SS, CC—CC, FC-FC,
FS-FS and FF-FF and four different truncation factors varying from 0.5-0.8 are listed in Table
12.

It can be seen from the tables that the eigenfrequencies always increase with the increase in the
truncation factors of the plate. This behavior is expected because with the increase in the truncation
factors, the rigidity of the plate also increases.

5. Conclusions

A new set of admissible functions is developed from the static solution of a tapered beam with
intermediate point supports under a Taylor series of loads and applied to analyze the free vibration
of tapered rectangular plates with intermediate line supports in one or two directions. Consistent
convergency can be obtained by taking the midpoint of the beam as the expanding point of the
Taylor series. The Rayleigh—Ritz method is adopted to derive the eigenfrequency equation. The
convergency studies show that good accuracy can be obtained and only a small number of terms
of the static beam functions needs to be used. Sets of the first-time presented results are tabulated
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for the one-direction or two-direction tapered rectangular plates with one or two intermediate line
supports in one or two directions in Tables 3—12. The numerical results provide valuable infor-
mation for engineers in design applications and may also serve as benchmarks for further reference.
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